Biliary tract neoplasm
Medical treatment

Michel Dureux, Paul Brousse University Hospital, Institut Gustave Roussy, Villejuif, FRANCE

Biliary tract cancer

- Rare tumor
- Different entities
- Diagnosis sometimes problematic
- Elderly patients with comorbidities
- Cholestasis
- Therapeutic options limited (mostly phase II trials; potentially curative surgery possible in < 20%)

Different Entities

<table>
<thead>
<tr>
<th>Incidence/10^5</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder (f > m)</td>
<td>1.2</td>
</tr>
<tr>
<td>Biliary tree</td>
<td></td>
</tr>
<tr>
<td>intrahepatic (m > f)</td>
<td>0.9</td>
</tr>
<tr>
<td>extrahepatic (m > f)</td>
<td>1.6</td>
</tr>
<tr>
<td>perihilar</td>
<td></td>
</tr>
<tr>
<td>distal</td>
<td>25%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>11</td>
</tr>
<tr>
<td>Esophagus</td>
<td>5</td>
</tr>
<tr>
<td>Colon</td>
<td>54</td>
</tr>
</tbody>
</table>

Epidemiology and carcinogenesis

- Rising incidence of cholangiocarcinoma over the past 30 years documented on 3 continents
- Unknown cause
 - Hypothesis: rise in one or several genotoxic environmental agents, causing cholangiocyte DNA damage
 - Khan et al.
 - levels of DNA adducts significantly higher in DNA from 12 patients with intrahepatic cholangiocarcinoma compared with non-cancer patient DNA (n=7); 2.9; p = 0.03
 - Hedgehog signalling pathway: role in mature tissue homeostasis

Subtypes

France: Malka 2007
Gallbladder carcinoma: a specificity

- Gallstone disease (0.5%-20%)
- Genetics (ethnicity, gender)
- Anatomy (APBDJ) (15%)
- Gallbladder adenoma
- Salmonella typhi (+ other)
- Chemicals

Very high (>9/105)
High (4-9/105)

Wistuba and Gazdar. Nature Reviews Cancer 2004

Sequential histological and molecular changes in GBC

Age: ~30-40
~45
~55
~60

- Gallstones and chronic inflammation
- p53 mutations
- TP53 inactivation
- Methylation of TP53 promoters

Loss of heterozygosity at SSCP
Loss of heterozygosity at Cts 6q32 and 6p21

Wistuba and Gazdar. Nature Reviews/Cancer 2004

Two pathways to GBC

Risk factors for intra-hepatic cholangiocarcinoma

Shaib, 2005

- Intra-hepatic cholangiocarcinoma
 - SEER between 1993 and 1999
 - 625 cases, 90 834 controls
 - Multivariate analysis
 - Several risk factors
 - Liver cirrhosis 27.2
 - Hepatitis C virus infection 6.1
 - HIV infection 5.9
 - Diabetes 2.3

Risk factors for bile duct carcinoma

- Primary sclerosing cholangitis
 - Progressive liver disease, associated with IBD
 - AP and GGT elevated, ERCP or MRCP for Dx
 - Cumulative risk for CCC 10-15%
 - Up to 36% CCC in explants before LTx
- Biliary malformation/Caroli Disease (5%-20%)
- Parasites: Clonorchis and Opisthorchis
- Secondary cholangitis/intraductal stones
- ?? Chronic inflammation
- ?? Transactivation of the EGF-R by bile

Growth Pattern

- Mass-forming
- Periductular-infiltrating
- Intraductal

Mass Forming - intrahepatic

Periductal-infiltrating

Intraductal papillary

Prognosis

- Ahmed et al, ASCO GI 2008 #135
 - OS longer in EHCC (6.0 vs. 3.7 months)
 - OS with surgery similar (13.6 vs. 13.6 months)
 - Surgery more likely in EHCC (26%) vs IHCC (9%)

- Beg et al, ASCO 2008 #15518
 - SEER database 1973-2004
 - OS for EHCC: 6 months vs. IHCC: 5 months

Survival of intraductal tumors much longer
 - > 2 years

Different patterns of recurrence

Jarnagin, 2003

- 177 patients potentially curative resection: 97 gallbladder, 80 hilar cholangiocarcinoma
 - Different median time to disease recurrence:
 - Gallbladder: 11.5 versus 20.3 months
 - Different type of recurrence:

<table>
<thead>
<tr>
<th>Local</th>
<th>Metastatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder</td>
<td>15%</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>59%</td>
</tr>
</tbody>
</table>

Carcinologic treatments
Gallbladder carcinoma

- Surgery with resection of segment IV of the liver
- Natural venous access from the gallbladder to the liver
- In case of incidental diagnosis of gallbladder a complementary resection of the liver + lymph node dissection is recommended

Adjuvant chemotherapy ???

- Takada, 2002
 - 508 patients: 139 bile duct, 140 gallbladder, 56 ampullomas
 - 5FU + MMC followed by oral 5FU versus control
 - 112 gallbladder eligible: 5-year survival 26% versus 14% (p = 0.0367)
 - Subgroup analysis… A lot of non eligible patients…

Intrahepatic bile duct cancer

Overall outcome intrahepatic CCC

- Resection

Survival (n=71)

Otto et al, 2007

Disease free survival

Otto et al, 2007
Disease free survival

Otto et al, 2007

Central bile duct cancer (Klatskin Tumor)

Surgery of Klatskin tumor

Otto, 2008

Extrahepatic CCC – Surgery

Miyazaki M 1999

- Resection Treatment of choice for ‘normal’
 - Klatskin tumors:
 - En Bloc resection
 - + portal vein resection
 - + lymph node dissection
 - Extrahepatic tumors:
 - + Pancreatoduodenectomy
- Resection yields dismal results in PSC
 - often multifocal CCC
 - 10% of pts with CCC have PSC

Liver Transplantation
Liver transplantation – Two periods

<table>
<thead>
<tr>
<th>Institution</th>
<th>Year</th>
<th>1y</th>
<th>3y</th>
<th>5y</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Transplant Registry</td>
<td>1997</td>
<td>80</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>King’s College, London, UK</td>
<td>1995</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Institute Hospital, Germany</td>
<td>1996</td>
<td>25</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>University of Pittsburgh, USA</td>
<td>1998</td>
<td>15</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Medical Center, Hamburg, Germany</td>
<td>1999</td>
<td>15</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

- 49 liver transplantations, 3 liver resections; 109 patients (109 LTX + LT with partial pancreatectomy).

Liver transplantation and adjuvant treatment

Mayo Clinic experience

- Rea, 2005
- 71 patients selected for transplantation
 - 38 underwent LT
 - Neoadjuvant therapy: RT 45 Gy, 5FU IV CI + brachytherapy 20–30 Gy, followed by 5FU or capecitabine
 - 26 resections
 - 28 unresectable disease

Liver transplant : 2nd period

Criteria for LTx

- Unresectable, perihilar
- Mass, radial diameter <3 cm, no cut off for longitudinal diameter
- If PSC, any ductal tumor <3 cm

Cholangiocarcinoma Treatment Protocol

- Results – September 2007
 - 148 patients
 - Irradiation + 5-FU
 - 123 staging operation
 - 90 liver transplantation
 - 12 receiving neoadjuvant Rx
 - 25 (20%) positive
 - 3 awaiting transplantation
 - 2 deaths
 - 3 transplant elsewhere
 - 63 deceased donor
 - 26 living donor
 - 1 domino donor

Results – September 2007

- 12 deaths, debilitation, or disease progression
 - 2 transplant elsewhere
 - 12 receiving neoadjuvant Rx
 - 25 (20%) positive
 - 3 awaiting transplantation
 - 2 deaths
 - 3 transplant elsewhere
 - 63 deceased donor
 - 26 living donor
 - 1 domino donor

Patient Survival After Transplantation

CCA Versus Other Diagnoses

- CCA (28)
- HCC (70)
- HCV (147)
- PSC (131)

Patient Survival After Transplantation

- CCA (28)
- HCC (70)
- HCV (147)
- PSC (131)
One problem of the medical treatment:
- Palliation of biliary obstruction

Palliative treatments

Methods = Plastic Stents
- Plastic stents => stent occlusion develops after 3-5 months
 - biliary obstruction and cholangitis
 - requires stent exchange

Due to a multifactorial process = deposition of a material containing bacterial biofilm, calcium bilirubinate and calcium palmitate crystals

Metal Stents
- Composed of either stainless steel or nitinol
- Delivered into bile duct while constrained by a sheath allowing insertion as a small circumference delivery system (7.5-10 French).
 - When the sheath is retracted, the wire mesh stent expand to a diameter up to 10 mm

Plastic vs Metal Stents?
5 comparative trials
- Longer patency of metal vs plastic stents 273 vs 126 days (Davids Lancet 1992;340:1488)
- 28 % reduction in ERC
- Survival duration did not differ
- Cost-effectiveness analysis = placement of a metal stent more economical than plastic stent only in patients with a survival > 4-6 months
- Identification of factors that reliably predict patient survival : multivariate analysis
 - Prat, Gut 1998 = tumor size > 3 cm (3.2 vs 6.6 months)
 - Kaassis, GIE 2003 = liver metastases (2.7 vs 5.7)

Malignant Hilar Obstruction
Bismuth-Corlette Classification

7/13/2009
Hilar Cholangiocarcinoma

Endoscopic management of malignant hilar obstruction of stage II to IV is controversial with respect to optimal types of stents and extent of drainage.

Drainage of 25% of the liver volume can achieve adequate palliation (Dowsett Gastroenterology 1989;96:1180).

2 Stents for Stage II

A = 1 lobe opacified same lobe drained

B = 2 lobes opacified and drained

C = 2 lobes opacified, 1 lobe drained

Partial drainage?

Guidelines for the Endoscopic Drainage

Distal cholangiocarcinomas
 - Plastic stents in patients with poor prognosis (large tumor, metastasis, poor general status)
 - Metal stents in the others

Hilar tumors
 - Evaluation with MRCP
 - Planning of optimal drainage
 - Limited opacification during ERC and insertion of the guidewire in preselected bile ducts

Photodynamic therapy

- Ablative Treatment for malignant/premalignant lesions
- Application of photosensitizing drug
- Irradiation with laser light (630 nm)
- Intracellular activation of photosensitizer
- Cellular injury
- additional effects: peritumoral thrombosis, immune resp.
Photodynamic therapy

- Clearly successful in several trials
- Excellent option for advanced unresectable ca.
- Available in few centers only
- Complex, time consuming procedure
- Suboptimal photosensitizer
- Suboptimal fibers
- Comparison with CT or RCT?

Glimelius, 1995
93 patients with pancreatic or biliary metastatic cancer
Improvement of survival and quality of life in the treated group (global analysis)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n patients</th>
<th>Survival</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>19</td>
<td>2.5 months</td>
<td></td>
</tr>
<tr>
<td>5FU-LV or ELF</td>
<td>18</td>
<td>6 months</td>
<td>NS</td>
</tr>
</tbody>
</table>

BSC vs FUFOL vs GEMOX in gallbladder

- Randomised monocentric study
- Main endpoint: overall survival
- Non resectable or metastatic gallbladder cancer
- ECOG 0-2, age 18-70 years (median age: 50)

<table>
<thead>
<tr>
<th></th>
<th>BSC</th>
<th>FUFOL</th>
<th>GEMOX</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>28</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>PFS (months)</td>
<td>2.8</td>
<td>3.5</td>
<td>8.5</td>
<td>0.001</td>
</tr>
<tr>
<td>SG (months)</td>
<td>4.5</td>
<td>4.6</td>
<td>9.3</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Methodological problems?
Confirm efficacy of combination treatment

Metastatic biliary tract cancer

Monochemotherapy with old drugs: not very active!

<table>
<thead>
<tr>
<th>Drug</th>
<th>n patients</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5FU</td>
<td>70</td>
<td>14 %</td>
</tr>
<tr>
<td>Mitomycin C</td>
<td>49</td>
<td>20 %</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>13</td>
<td>8 %</td>
</tr>
<tr>
<td>Methyl-CCNU</td>
<td>17</td>
<td>6 %</td>
</tr>
<tr>
<td>Amsacrine</td>
<td>23</td>
<td>9 %</td>
</tr>
<tr>
<td>Streptozotocin</td>
<td>14</td>
<td>17 %</td>
</tr>
</tbody>
</table>

Metastatic biliary tract cancer: New drugs

- Irinotecan: Alberts 2002
 - 39 patients with gallbladder carcinoma
 - 125 mg/m² weekly for 4 weeks, two weeks of rest
 - ORR: 8%
- Tegafur: 16 patients: 0 response
- S1: 19 patients: ORR = 21%, OS = 8.3 months
- Paclitaxel: Jones, 1996
 - 15 patients: no response
- Docetaxel: Souglakos, 2001
 - 25 patients: ORR = 20%
Classical Combination – EORTC 40955
not very active

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>5FU</th>
<th>5FU + FA + P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 27</td>
<td>n = 26</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>0%</td>
<td>4%</td>
</tr>
<tr>
<td>PR</td>
<td>7%</td>
<td>15%</td>
</tr>
<tr>
<td>ORR [CI]</td>
<td>7.1% [1 - 30]</td>
<td>18.5% [8 - 35]</td>
</tr>
<tr>
<td>Early toxic death</td>
<td>0</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Median survival</td>
<td>Overall (months)</td>
<td>5.0 [4.0 - 7.4]</td>
</tr>
<tr>
<td>Progression free</td>
<td>3.3 [1.7 - 4.7]</td>
<td>3.3 [2.3 - 6.7]</td>
</tr>
</tbody>
</table>

Gemcitabine monotherapy

<table>
<thead>
<tr>
<th>Trial Schedule</th>
<th>Patients</th>
<th>ORR (%)</th>
<th>PFS (months)</th>
<th>OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobsen, 2003 (A)</td>
<td>Gem, 5FU</td>
<td>27</td>
<td>33</td>
<td>4.4</td>
</tr>
<tr>
<td>Hsu, 2004</td>
<td>Gem, 5FU, LV</td>
<td>30</td>
<td>21</td>
<td>4.7</td>
</tr>
<tr>
<td>Alberts, 2005</td>
<td>Gem, 5FU</td>
<td>42</td>
<td>8.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Gellibert, 2005</td>
<td>Gem, FDR</td>
<td>11</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Jacobson, 2003 (A)</td>
<td>Gem, 5FU, LV</td>
<td>48</td>
<td>9.5</td>
<td>9.6</td>
</tr>
<tr>
<td>Knox, 2005</td>
<td>Gem, Cap</td>
<td>45</td>
<td>31</td>
<td>7.0</td>
</tr>
<tr>
<td>Cho, 2005</td>
<td>Gem, Cap</td>
<td>44</td>
<td>32</td>
<td>6.0</td>
</tr>
<tr>
<td>Bhargava, 2003</td>
<td>Gem, irinotecan</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Korni, 2004 (Hi)</td>
<td>Gem, MMC</td>
<td>25</td>
<td>20</td>
<td>4.2</td>
</tr>
<tr>
<td>Kuhn, 2002</td>
<td>Gem, docetaxel</td>
<td>43</td>
<td>9</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Combination chemotherapy with Gemcitabine (excluding platinum analogs)

<table>
<thead>
<tr>
<th>Trial Schedule</th>
<th>Patients</th>
<th>ORR (%)</th>
<th>PFS (months)</th>
<th>OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knox, 2004</td>
<td>Gem, 5FU</td>
<td>27</td>
<td>33</td>
<td>5.3</td>
</tr>
<tr>
<td>Munsel, 2003</td>
<td>Gem, 5FU</td>
<td>26</td>
<td>31</td>
<td>9.0</td>
</tr>
<tr>
<td>Hsu, 2004</td>
<td>Gem, 5FU, LV</td>
<td>30</td>
<td>21</td>
<td>4.7</td>
</tr>
<tr>
<td>Jacobsen, 2003 (A)</td>
<td>Gem, 5FU, LV</td>
<td>42</td>
<td>8.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Alberts, 2005</td>
<td>Gem, 5FU, LV</td>
<td>42</td>
<td>8.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Gellibert, 2005</td>
<td>Gem, FDR, Cap</td>
<td>52</td>
<td>10</td>
<td>7.0</td>
</tr>
<tr>
<td>Knox, 2005</td>
<td>Gem, Cap</td>
<td>45</td>
<td>31</td>
<td>7.0</td>
</tr>
<tr>
<td>Cho, 2005</td>
<td>Gem, Cap</td>
<td>44</td>
<td>32</td>
<td>6.0</td>
</tr>
<tr>
<td>Bhargava, 2003</td>
<td>Gem, irinotecan</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Korni, 2004 (Hi)</td>
<td>Gem, MMC</td>
<td>25</td>
<td>20</td>
<td>4.2</td>
</tr>
<tr>
<td>Kuhn, 2002</td>
<td>Gem, docetaxel</td>
<td>43</td>
<td>9</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Gemcitabine + platinum analogs

<table>
<thead>
<tr>
<th>Trial Schedule</th>
<th>Patients</th>
<th>ORR (%)</th>
<th>PFS (months)</th>
<th>OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knox, 2004</td>
<td>Gem, cisplatine</td>
<td>30</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>Hsu, 2004</td>
<td>Gem, cisplatine</td>
<td>26</td>
<td>31</td>
<td>4.8</td>
</tr>
<tr>
<td>Jacobson, 2003 (A)</td>
<td>Gem, cisplatine</td>
<td>48</td>
<td>9.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Knox, 2005</td>
<td>Gem, Cap</td>
<td>45</td>
<td>31</td>
<td>7.0</td>
</tr>
<tr>
<td>Cho, 2005</td>
<td>Gem, Cap</td>
<td>44</td>
<td>32</td>
<td>6.0</td>
</tr>
<tr>
<td>Bhargava, 2003</td>
<td>Gem, irinotecan</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Korni, 2004 (Hi)</td>
<td>Gem, MMC</td>
<td>25</td>
<td>20</td>
<td>4.2</td>
</tr>
<tr>
<td>Kuhn, 2002</td>
<td>Gem, docetaxel</td>
<td>43</td>
<td>9</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Palliative chemotherapy:

Systematic review (1985-2005):

<table>
<thead>
<tr>
<th>TRIALS</th>
<th>Patients</th>
<th>ORR (%)</th>
<th>IC50 (%)</th>
<th>Range (%)</th>
<th>PFS (months)</th>
<th>OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2137</td>
<td>23.3</td>
<td>21.5-25.2</td>
<td>0-89</td>
<td>4.1</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Taxanes, irinotecan : negative impact on ORR
Gemcitabine : ∗ (non significant) OR with 5FU (or CAP) (22% vs 17%) Platinum analogues : significant ∗ OR with 5FU (27% vs 17%) or GEM (42% vs 22%)

Promising results should be evaluated in randomized trials
Good option for standard care

Multicentric Gemox gallbladder : to be or not to be?

André, 2006
70 patients
− Cholangiocarinoma + gallbladder tumours
− Locally advanced and metastatic disease

Location | Gallbladder | Non gallb. | %RO | PFS | OS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>35</td>
<td>4</td>
<td>1.8</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>35</td>
<td>3.8</td>
<td>11.2</td>
<td></td>
</tr>
</tbody>
</table>
The same for Gem-Cap
Knox, 2006
- 23 Cholangiocarcinoma + 22 gallbladder tumours
- Locally advanced and metastatic disease

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>%RO</th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder</td>
<td>22</td>
<td>28%</td>
<td>4.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Non gallb.</td>
<td>23</td>
<td>34%</td>
<td>9.0</td>
<td>19</td>
</tr>
</tbody>
</table>

Completely different with Xelox
Nehls, ASCO 2006
- Xelox
 - 65 patients, median number of cycles = 5
 - Good tolerance

<table>
<thead>
<tr>
<th>Location</th>
<th>CR / PR</th>
<th>SD</th>
<th>Median OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallbladder (n=27)</td>
<td>4 / 23%</td>
<td>45%</td>
<td>12.8 m</td>
</tr>
<tr>
<td>Intra-hepatic CC (n=18)</td>
<td>0 / 0%</td>
<td>28%</td>
<td>5.8 m</td>
</tr>
<tr>
<td>Extra-hepatic CC (n=20)</td>
<td>5 / 20%</td>
<td>45%</td>
<td>12.8 m</td>
</tr>
</tbody>
</table>

ABC-02 study schema

Results: activity

GEM vs GEMCIS - UK-ABC 02 trial

GEM vs GEMCIS UK-ABC 02

Intermediate analysis of ABC 01 and 02
- 410 patients, median age 64 (23-85)
- LAD 25% / M+ 75%
- ECOG 0-1 87% / 2 13%
- Gallbladder 36%/ Biliary tree 59% / Ampulloma 5%

Comparable toxicity (Gr 3-4: 65.5 vs 64.2%)

<table>
<thead>
<tr>
<th></th>
<th>GEM</th>
<th>GEMCIS</th>
<th>HR (95%CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>206</td>
<td>204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS (months)</td>
<td>11.7</td>
<td>8.3</td>
<td>0.70 (0.54-0.89)</td>
<td>0.002</td>
</tr>
<tr>
<td>PFS (months)</td>
<td>8.4</td>
<td>6.5</td>
<td>0.72 (0.57-0.90)</td>
<td>0.003</td>
</tr>
</tbody>
</table>
GEM vs GEMCIS UK-ABC 02

Overall survival

Gemmabine + cisplatin: new standard of care

Targeted therapies

Anti-angiogenic?

- Bevacizumab
 - Clark, ASCO 2007
 - Gemcitabine + oxaliplatin + bevacizumab
 - 19 patients, 10 biliary tract, 9 gallbladder
 - 3 PR, 5 stable disease
 - Low toxicity profile
 - No survival results

- Sorafenib ???, Elkhoueiry ASCO 2007
 - 36 patients
 - 400 mg x 2 / day
 - Leucoencephalitis 1 pt, perforation 1 pt, haemorrhag 1 pt
 - Median PFS: 2 months
 - Overall survival: 6 months
 - Non encouraging results

Targeted therapies

Anti-EGFR

Phase II study of Erlotinib in Patients With Advanced Biliary Cancers

<table>
<thead>
<tr>
<th>Phase II Study of Erlotinib in Patients With Advanced Biliary Cancers</th>
</tr>
</thead>
</table>
| Philip A. Pippin, Michelle R. McNeilly, Calvina Adams, Jarnen Flandre, Henry C. Pink, George Kim,
 Ben C. Bonventre, Ron Pink, Joel Pluse, and Charles Elliott |
BINGO: international, multicenter, open-label, randomized phase 2 trial

- Gemcitabine 1000 mg/m² in 100 min (10 mg/m²/min) IV – D1
- Oxaliplatin 100 mg/m² in 120 min IV – D2 Every 2 weeks
- Gemcitabine 1000 mg/m² in 100 min (10 mg/m²/min) IV – D1
- Cetuximab 500 mg/m² in 150 min IV – D1 or D2 Every 2 weeks

Endpoints
- Primary: 4-month PFS rate (RECIST)
- Secondary:
 - Toxicity
 - ORR, DCR, resectability rate
 - PFS, OS
- Exploratory: identification of predictive biomarkers for efficacy
- Biological study (blood, tumor): EGFR pathway analyses
- Functional imaging study (PET)

Grade 3/4 toxicity

<table>
<thead>
<tr>
<th>Severe toxicity (% patients)</th>
<th>GEMOX (n=17)</th>
<th>GEMOX + cetuximab (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>76</td>
<td>67</td>
</tr>
<tr>
<td>Hematologic</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>Anemia</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia (febrile)</td>
<td>25 (0)</td>
<td>28 (6)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>Peripheral neuropathy b</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>Fatigue</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Rash / hypersensitivity</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>

* NCIC-CTC v3.0, grade 3-4
* Modified Levits, grade 2-3

Efficacy

- 4-month PFS:
 - GEMOX (n=18): 44%
 - GEMOX + Cetuximab (n=18): 61%

Median follow-up: 5 months

Conclusion

- Medical treatment of biliary tract carcinoma remains difficult
- Jaundice should be treated and photodynamic therapy seems to be an improvement
- Gallbladder carcinoma and other cholangiocarcinomas are very different tumours
- Gemcitabine + cisplatin in a new CT standard
- Gemox + cetuximab: next step???
- Specific evaluation of new molecules should be done with stratification factors